资源类型

期刊论文 232

年份

2023 26

2022 24

2021 22

2020 11

2019 16

2018 19

2017 5

2016 9

2015 9

2014 3

2013 12

2012 8

2011 14

2010 10

2009 11

2008 8

2007 15

2005 1

2004 2

2001 1

展开 ︾

关键词

催化剂 2

反应模型 2

热力学 2

&alpha 1

Al-Cr203体系 1

COVID-19 1

DNA计算 1

PCR核酸检测 1

Pd局域环境 1

sn-2棕榈酸甘油酯 1

一维(1D) 1

三相界面 1

两个反应区 1

中子测量 1

乙炔半加氢 1

乙烷干重整 1

二氧化碳 1

五模材料 1

产氧反应 1

展开 ︾

检索范围:

排序: 展示方式:

Prediction of falling weight deflectometer parameters using hybrid model of genetic algorithm and adaptive neuro-fuzzy inference system

《结构与土木工程前沿(英文)》   页码 812-826 doi: 10.1007/s11709-023-0940-7

摘要: A falling weight deflectometer is a testing device used in civil engineering to measure and evaluate the physical properties of pavements, such as the modulus of the subgrade reaction (Y1) and the elastic modulus of the slab (Y2), which are crucial for assessing the structural strength of pavements. In this study, we developed a novel hybrid artificial intelligence model, i.e., a genetic algorithm (GA)-optimized adaptive neuro-fuzzy inference system (ANFIS-GA), to predict Y1 and Y2 based on easily determined 13 parameters of rigid pavements. The performance of the novel ANFIS-GA model was compared to that of other benchmark models, namely logistic regression (LR) and radial basis function regression (RBFR) algorithms. These models were validated using standard statistical measures, namely, the coefficient of correlation (R), mean absolute error (MAE), and root mean square error (RMSE). The results indicated that the ANFIS-GA model was the best at predicting Y1 (R = 0.945) and Y2 (R = 0.887) compared to the LR and RBFR models. Therefore, the ANFIS-GA model can be used to accurately predict Y1 and Y2 based on easily measured parameters for the appropriate and rapid assessment of the quality and strength of pavements.

关键词: falling weight deflectometer     modulus of subgrade reaction     elastic modulus     metaheuristic algorithms    

Modified Bishop method for stability analysis of weakly sloped subgrade under centrifuge model test

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 727-741 doi: 10.1007/s11709-021-0730-z

摘要: The sliding forms of weak sloped and horizontal subgrades during the sliding process differ. In addition, the sliding form of weakly sloped subgrades exhibits considerable slippage and asymmetry. The accuracy of traditional slice methods for computing the stability safety factor of weakly sloped subgrades is insufficient for a subgrade design. In this study, a novel modified Bishop method was developed to improve the accuracy of the stability safety factor for different inclination angles. The instability mechanism of the weakly sloped subgrade was considered in the proposed method using the “influential force” and “additional force” concepts. The “additional force” reflected the weight effect of the embankment fill, whereas the “influential force” reflected the effect of the potential energy difference. Numerical simulations and experimental tests were conducted to evaluate the advantages of the proposed modified Bishop method. Compared with the traditional slice method, the error between the proposed method and the exact value is less than 32.3% in calculating the safety factor.

关键词: weakly sloped subgrade     stability analysis     additional force     influential force     modified Bishop method    

高原冻土区公路路基病害及工程对策

汪双杰,金龙,穆柯,朱东鹏,陈冬根,董元宏

《中国工程科学》 2017年 第19卷 第6期   页码 140-146 doi: 10.15302/J-SSCAE-2017.06.020

摘要:

本文分析了青藏公路60多年来的历次改建及病害资料,以道路病害率为依据将青藏公路分为稳定区、基本稳定区、不稳定区和极不稳定区;选取了134 km典型病害路段,分析年平均地温、冻土上限退化速率、含冰量与道路病害关系,确定各因素影响下道路的平均使用年限;研究热棒、片块石、保温板、通风管路基处治效果,以及各处治措施实施后引发的新工程病害,分析新生病害的时间效应,并介绍了弥散式通风路基、单向导热板路基和路基路面一体化散热结构等适用于大尺度冻土路基的新型稳定技术。研究结果表明:年平均地温、冻土上限退化速率、含冰量等因素与道路使用寿命均为负相关关系,在各类处治措施中,热棒、片块石、保温板、通风管加片块石对病害预防的有效率较高。

关键词: 多年冻土     时间尺度效应     路基病害     现场调查     大尺度路基     稳定技术    

Empirical models and design codes in prediction of modulus of elasticity of concrete

Behnam VAKHSHOURI, Shami NEJADI

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 38-48 doi: 10.1007/s11709-018-0479-1

摘要: Modulus of Elasticity (MOE) is a key parameter in reinforced concrete design. It represents the stress-strain relationship in the elastic range and is used in the prediction of concrete structures. Out of range estimation of MOE in the existing codes of practice strongly affect the design and performance of the concrete structures. This study includes: (a) evaluation and comparison of the existing analytical models to estimating the MOE in normal strength concrete, and (b) proposing and verifying a new model. In addition, a wide range of experimental databases and empirical models to estimate the MOE from compressive strength and density of concrete are evaluated to verification of the proposed model. The results show underestimation of MOE of conventional concrete in majority of the existing models. Also, considering the consistency between density and mechanical properties of concrete, the predicted MOE in the models including density effect, are more compatible with the experimental results.

关键词: modulus of elasticity     normal strength normal weight concrete     empirical models     design codes     compressive strength     density    

Elastic modulus and thermal stress in coating during heat cycling with different substrate shapes

Daniel GAONA,Alfredo VALAREZO

《机械工程前沿(英文)》 2015年 第10卷 第3期   页码 294-300 doi: 10.1007/s11465-015-0351-0

摘要:

The elastic modulus of a deposit (Ed) can be obtained by monitoring the temperature (?T) and curvature (?k) of a one-side coated long plate, namely, a one-dimensional (1D) deformation model. The aim of this research is to design an experimental setup that proves whether a 1D deformation model can be scaled for complex geometries. The setup includes a laser displacement sensor mounted on a robotic arm capable of scanning a specimen surface and measuring its deformation. The reproducibility of the results is verified by comparing the present results with Stony Brook University Laboratory’s results. The ?k-?T slope error is less than 8%, and the Ed estimation error is close to 2%. These values reveal the repeatability of the experiments. Several samples fabricated with aluminum as the substrate and 100MXC nanowire (Fe and Cr alloy) as the deposit are analyzed and compared with those in finite element (FE) simulations. The linear elastic behavior of 1D (flat long plate) and 2D (squared plate) specimens during heating/cooling cycles is demonstrated by the high linearity of all ?k-?T curves (over 97%). The Ed values are approximately equal for 1D and 2D analyses, with a median of 96 GPa and standard deviation of 2 GPa. The correspondence between the experimental and simulated results for the 1D and 2D specimens reveals that deformation and thermal stress in coated specimens can be predicted regardless of specimen geometry through FE modeling and by using the experimental value of Ed. An example of a turbine-blade-shaped substrate is presented to validate the approach.

关键词: in-plane     Young’s modulus     curvature temperature     thermal stress     coating    

An improved design method to predict the E-modulus and strength of FRP composites at different temperatures

Mohammed FARUQI, Gobishanker RAJASKANTHAN, Breanna BAILEY, Francisco AGUINIGA

《结构与土木工程前沿(英文)》 2022年 第16卷 第12期   页码 1653-1653 doi: 10.1007/s11709-019-0578-7

摘要: In recent years, there has been an increased interest in the use of fiber reinforced polymer (FRP) in the construction industry. However, the E-modulus and strength of such members at high service temperatures is still unknown. Modulus and strength of FRP at high service temperatures are highly required parameters for full design. The knowledge and application of this could lead to a cost effective and practical consideration in fire safety design. Thus, this paper proposes design methods for calculating the E-modulus and strength of FRP members at different temperatures. Experimental data from literature were normalized and compared with the results predicted by this method. It was found that the proposed design methods conservatively estimate the E-modulus and strength of FRP structural members. In addition, comparison was also made with direct references to the real behavior of materials. It was found to be satisfactory. Finally, an application is provided.

关键词: concrete     fiber reinforced polymer     E-modulus     strength     temperatures    

An improved design method to predict the E-modulus and strength of FRP composites at different temperatures

Mohammed FARUQI, Gobishanker RAJASKANTHAN, Breanna BAILEY, Francisco AGUINIGA

《结构与土木工程前沿(英文)》 2022年 第16卷 第12期   页码 1654-1654 doi: 10.1007/s11709-020-0622-7

Simulation of viscoelastic behavior of defected rock by using numerical manifold method

Feng REN, Lifeng FAN, Guowei MA

《结构与土木工程前沿(英文)》 2011年 第5卷 第2期   页码 199-207 doi: 10.1007/s11709-011-0102-1

摘要: Numerical simulations of longitudinal wave propagation in a rock bar with microcracks are conducted by using the numerical manifold method which has great advantages in the simulation of discontinuities. Firstly, validation of the numerical manifold method is carried out by simulations of a longitudinal stress wave propagating through intact and cracked rock bars. The behavior of the stress wave traveling in a one-dimensional rock bar with randomly distributed microcracks is subsequently studied. It is revealed that the highly defected rock bar has significant viscoelasticity to the stress wave propagation. Wave attenuation as well as time delay is affected by the length, quantity, specific stiffness of the distributed microcracks as well as the incident stress wave frequency. The storage and loss moduli of the defected rock are also affected by the microcrack properties; however, they are independent of incident stress wave frequency.

关键词: stress wave propagation     defected rock     numerical manifold method     viscoelastic behavior     storage modulus     loss modulus    

Predicting resilient modulus of recycled concrete and clay masonry blends for pavement applications using

Mosbeh R. KALOOP, Alaa R. GABR, Sherif M. EL-BADAWY, Ali ARISHA, Sayed SHWALLY, Jong WAN HU

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1379-1392 doi: 10.1007/s11709-019-0562-2

摘要: To date, very few researchers employed the Least Square Support Vector Machine (LSSVM) in predicting the resilient modulus ( ) of Unbound Granular Materials (UGMs). This paper focused on the development of a LSSVM model to predict the of recycled materials for pavement applications and comparison with other different models such as Regression, and Artificial Neural Network (ANN). Blends of Recycled Concrete Aggregate (RCA) with Recycled Clay Masonry (RCM) with proportions of 100/0, 90/10, 80/20, 70/30, 55/45, 40/60, 20/80, and 0/100 by the total aggregate mass were evaluated for use as UGMs. RCA/RCM materials were collected from dumps on the sides of roads around Mansoura city, Egypt. The investigated blends were evaluated experimentally by routine and advanced tests and the values were determined by Repeated Load Triaxial Test (RLTT). Regression, ANN, and LSSVM models were utilized and compared in predicting the of the investigated blends optimizing the best design model. Results showed that the ’s of the investigated RCA/RCM blends were generally increased with the decrease in RCM proportion. Statistical analyses were utilized for evaluating the performance of the developed models and the inputs sensitivity parameters. Eventually, the results approved that the LSSVM model can be used as a novel tool to estimate the of the investigated RCA/RCM blends.

关键词: Least Square Support Vector Machine     Artificial Neural Network     resilient modulus     Recycled Concrete Aggregate     Recycled Clay Masonry    

Assessing artificial neural network performance for predicting interlayer conditions and layer modulus

Lingyun YOU, Kezhen YAN, Nengyuan LIU

《结构与土木工程前沿(英文)》 2020年 第14卷 第2期   页码 487-500 doi: 10.1007/s11709-020-0609-4

摘要: The objective of this study is to evaluate the performance of the artificial neural network (ANN) approach for predicting interlayer conditions and layer modulus of a multi-layered flexible pavement structure. To achieve this goal, two ANN based back-calculation models were proposed to predict the interlayer conditions and layer modulus of the pavement structure. The corresponding database built with ANSYS based finite element method computations for four types of a structure subjected to falling weight deflectometer load. In addition, two proposed ANN models were verified by comparing the results of ANN models with the results of PADAL and double multiple regression models. The measured pavement deflection basin data was used for the verifications. The comparing results concluded that there are no significant differences between the results estimated by ANN and double multiple regression models. PADAL modeling results were not accurate due to the inability to reflect the real pavement structure because pavement structure was not completely continuous. The prediction and verification results concluded that the proposed back-calculation model developed with ANN could be used to accurately predict layer modulus and interlayer conditions. In addition, the back-calculation model avoided the back-calculation errors by considering the interlayer condition, which was barely considered by former models reported in the published studies.

关键词: asphalt pavement     interlayer conditions     finite element method     artificial neural network     back-calculation    

Thermodynamic analysis of reaction pathways and equilibrium yields for catalytic pyrolysis of naphtha

《化学科学与工程前沿(英文)》 2022年 第16卷 第12期   页码 1700-1712 doi: 10.1007/s11705-022-2207-6

摘要: The chain length and hydrocarbon type significantly affect the production of light olefins during the catalytic pyrolysis of naphtha. Herein, for a better catalyst design and operation parameters optimization, the reaction pathways and equilibrium yields for the catalytic pyrolysis of C5–8 n/iso/cyclo-paraffins were analyzed thermodynamically. The results revealed that the thermodynamically favorable reaction pathways for n/iso-paraffins and cyclo-paraffins were the protolytic and hydrogen transfer cracking pathways, respectively. However, the formation of light paraffin severely limits the maximum selectivity toward light olefins. The dehydrogenation cracking pathway of n/iso-paraffins and the protolytic cracking pathway of cyclo-paraffins demonstrated significantly improved selectivity for light olefins. The results are thus useful as a direction for future catalyst improvements, facilitating superior reaction pathways to enhance light olefins. In addition, the equilibrium yield of light olefins increased with increasing the chain length, and the introduction of cyclo-paraffin inhibits the formation of light olefins. High temperatures and low pressures favor the formation of ethylene, and moderate temperatures and low pressures favor the formation of propylene. n-Hexane and cyclohexane mixtures gave maximum ethylene and propylene yield of approximately 49.90% and 55.77%, respectively. This work provides theoretical guidance for the development of superior catalysts and the selection of proper operation parameters for the catalytic pyrolysis of C5–8 n/iso/cyclo-paraffins from a thermodynamic point of view.

关键词: naphtha     catalytic pyrolysis     reaction pathway     equilibrium yield    

Shaking table test of composite foundation reinforcement of saturated silty soil for high speed railway

JIANG Guanlu, LIU Xianfeng, ZHANG Jianwen, ZHAO Ruyi

《结构与土木工程前沿(英文)》 2007年 第1卷 第3期   页码 353-360 doi: 10.1007/s11709-007-0047-6

摘要: Three shaking table model tests were conducted with a geometrical scale of 1:10 using a large-scale laminar shear box to investigate the reinforcement effects of compacted gravel column-net composite foundation and cement fly-ash gravel (CFG) column-net composite foundation on the saturated silty soil along the Beijing-Shanghai High Speed Railway. The research results indicate that the increase in excess pore water pressure can be restrained effectively by the compacted gravel column-net composite foundation to improve the anti-liquefaction ability of the ground, and that shear displacement of the ground can be reduced greatly by the compacted gravel column-net and CFG column-net composite foundations to improve the capability of resisting shear displacement of ground. Furthermore, the amplifying of response acceleration, induced by foundation liquefaction, and the settlement of foundation and subgrade can be reduced greatly by the compacted gravel column-net and CFG column-net composite foundations to improve the aseismatic property of the foundation and subgrade.

关键词: large-scale     CFG column-net     amplifying     displacement     subgrade    

The stress relaxation of cement clinkers under high temperature

Xiufang WANG,Yiwang BAO,Xiaogen LIU,Yan QIU

《机械工程前沿(英文)》 2015年 第10卷 第4期   页码 413-417 doi: 10.1007/s11465-015-0357-7

摘要:

The energy consumption of crushing is directly affected by the mechanical properties of cement materials. This research provides a theoretical proof for the mechanism of the stress relaxation of cement clinkers under high temperature. Compression stress relaxation under various high temperatures is discussed using a specially developed load cell, which can measure stress and displacement under high temperatures inside an autoclave. The cell shows that stress relaxation dramatically increases and that the remaining stress rapidly decreases with an increase in temperature. Mechanical experiments are conducted under various temperatures during the cooling process to study the changes in the grinding resistance of the cement clinker with temperature. The effects of high temperature on the load-displacement curve, compressive strength, and elastic modulus of cement clinkers are systematically studied. Results show that the hardening phenomenon of the clinker becomes apparent with a decrease in temperature and that post-peak behaviors manifest characteristics of the transformation from plasticity to brittleness. The elastic modulus and compressive strength of cement clinkers increase with a decrease in temperature. The elastic modulus increases greatly when the temperature is lower than 1000 °C. The compressive strength of clinkers increases by 73.4% when the temperature drops from 1100 to 800 °C.

关键词: stress relaxation     high temperature     cement clinker     compression     elastic modulus    

Quality evaluation of lightweight cellular concrete by an ultrasound-based method

Xin LIU; Dongning SUN; Jinhe LIAO; Zhiwei SHAO; Yunqiang SHI; Siqing ZHANG; Yunlong YAO; Baoning HONG

《结构与土木工程前沿(英文)》 2022年 第16卷 第9期   页码 1170-1182 doi: 10.1007/s11709-022-0874-5

摘要: The accuracy of subgrade quality evaluation is important for road safety assessment. Since there is little research work devoted to testing lightweight cellular concrete (LCC) by an ultrasound-based method, the quantitative relation between ultrasonic testing results and the quality of LCC subgrade is not well understood. In this paper, the quality of LCC subgrade was evaluated with respect to compressive strength and crack discrimination. The relation between ultrasonic testing results and LCC quality was explored through indoor tests. Based on the quantitative relation between ultrasonic pulse velocity and compressive strength of LCC, a fitting formula was established. Moreover, after the LCC became cracked, the ultrasonic pulse velocity and ultrasonic pulse amplitude decreased. After determining the lower limiting values of the ultrasonic pulse velocity and ultrasonic pulse amplitude through the statistical data, it could be calculated whether there were cracks in LCC subgrade. The ultrasonic testing results showed that the compressive strength of the LCC subgrade was suitable for purpose and there was no crack in the subgrade. Then core samples were taken from the subgrade. Comparisons between ultrasonic testing results of subgrade and test results of core samples demonstrated a good agreement.

关键词: lightweight cellular concrete     subgrade     ultrasound testing     quality evaluation     crack discrimination    

催化裂化过程反应化学的进展

许友好,汪燮卿

《中国工程科学》 2007年 第9卷 第8期   页码 6-14

摘要:

面对催化裂化工艺所遇到的挑战,提出了催化裂化过程反应化学的多维反应结构模式。多维反应结构模式的建立是基于对烃类在酸性催化剂上反应化学认识而进行的知识创新,但多维反应结构不同于烃类在酸性催化剂上反应化学。具有多维反应结构的催化裂化工艺更具有多样性和灵活性,基于此已成功地开发了多产异构烷烃的催化裂化工艺和生产清洁汽油和多产丙烯的催化裂化工艺。

关键词: 催化裂化     反应化学     催化剂     多维反应结构     两个反应区    

标题 作者 时间 类型 操作

Prediction of falling weight deflectometer parameters using hybrid model of genetic algorithm and adaptive neuro-fuzzy inference system

期刊论文

Modified Bishop method for stability analysis of weakly sloped subgrade under centrifuge model test

期刊论文

高原冻土区公路路基病害及工程对策

汪双杰,金龙,穆柯,朱东鹏,陈冬根,董元宏

期刊论文

Empirical models and design codes in prediction of modulus of elasticity of concrete

Behnam VAKHSHOURI, Shami NEJADI

期刊论文

Elastic modulus and thermal stress in coating during heat cycling with different substrate shapes

Daniel GAONA,Alfredo VALAREZO

期刊论文

An improved design method to predict the E-modulus and strength of FRP composites at different temperatures

Mohammed FARUQI, Gobishanker RAJASKANTHAN, Breanna BAILEY, Francisco AGUINIGA

期刊论文

An improved design method to predict the E-modulus and strength of FRP composites at different temperatures

Mohammed FARUQI, Gobishanker RAJASKANTHAN, Breanna BAILEY, Francisco AGUINIGA

期刊论文

Simulation of viscoelastic behavior of defected rock by using numerical manifold method

Feng REN, Lifeng FAN, Guowei MA

期刊论文

Predicting resilient modulus of recycled concrete and clay masonry blends for pavement applications using

Mosbeh R. KALOOP, Alaa R. GABR, Sherif M. EL-BADAWY, Ali ARISHA, Sayed SHWALLY, Jong WAN HU

期刊论文

Assessing artificial neural network performance for predicting interlayer conditions and layer modulus

Lingyun YOU, Kezhen YAN, Nengyuan LIU

期刊论文

Thermodynamic analysis of reaction pathways and equilibrium yields for catalytic pyrolysis of naphtha

期刊论文

Shaking table test of composite foundation reinforcement of saturated silty soil for high speed railway

JIANG Guanlu, LIU Xianfeng, ZHANG Jianwen, ZHAO Ruyi

期刊论文

The stress relaxation of cement clinkers under high temperature

Xiufang WANG,Yiwang BAO,Xiaogen LIU,Yan QIU

期刊论文

Quality evaluation of lightweight cellular concrete by an ultrasound-based method

Xin LIU; Dongning SUN; Jinhe LIAO; Zhiwei SHAO; Yunqiang SHI; Siqing ZHANG; Yunlong YAO; Baoning HONG

期刊论文

催化裂化过程反应化学的进展

许友好,汪燮卿

期刊论文